If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2=2t^2+4t-96
We move all terms to the left:
t^2-(2t^2+4t-96)=0
We get rid of parentheses
t^2-2t^2-4t+96=0
We add all the numbers together, and all the variables
-1t^2-4t+96=0
a = -1; b = -4; c = +96;
Δ = b2-4ac
Δ = -42-4·(-1)·96
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-20}{2*-1}=\frac{-16}{-2} =+8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+20}{2*-1}=\frac{24}{-2} =-12 $
| 10(3x-2)=70 | | 8-x=-2x+9 | | t/2t-12=t+8/t | | 4x^2+36x+65=0 | | 3x+3+4x+2=178 | | t^2+t-24=0 | | 5t2−4t=11 | | 16x+13=-8x+11 | | -3c^2+8c=0 | | 14x+17=4x+10, | | 8x+16=1x+16 | | -10x+6=1x+-13 | | x−2 5=2 3−3x−2 6 | | 4x+7=2-x+4 | | -4x-9=-10-5x | | 3c^2-18c+24=-2 | | x+13=−4x+11 | | 1050m+950=1475 | | x/3-4=1.5 | | -9b+7-2b=40 | | (2x+3)^2+9=57 | | 8x-3x-8=20 | | 4y-26=82 | | -2=-y-7 | | 6x+3°=8x-37 | | 5y+6×=50 | | -6x+5=33 | | 7x^2-1=-4 | | 16-r÷7=21 | | 7x^2-1=4 | | 14=9+s/3 | | 5/6y=169/2 |